Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Future species composition will affect forest water use after loss of eastern hemlock from southern Appalachian forests.

Identifieur interne : 002680 ( Main/Exploration ); précédent : 002679; suivant : 002681

Future species composition will affect forest water use after loss of eastern hemlock from southern Appalachian forests.

Auteurs : Steven Brantley [États-Unis] ; Chelcy R. Ford ; James M. Vose

Source :

RBID : pubmed:23865229

Descripteurs français

English descriptors

Abstract

Infestation of eastern hemlock (Tsuga canadensis (L.) Carr.) with hemlock woolly adelgid (HWA, Adelges tsugae) has caused widespread mortality of this key canopy species throughout much of the southern Appalachian Mountains in the past decade. Because eastern hemlock is heavily concentrated in riparian habitats, maintains a dense canopy, and has an evergreen leaf habit, its loss is expected to have a major impact on forest processes, including transpiration (E(t)). Our goal was to estimate changes in stand-level E(t) since HWA infestation, and predict future effects of forest regeneration on forest E(t) in declining eastern hemlock stands where hemlock represented 50-60% of forest basal area. We used a combination of community surveys, sap flux measurements, and empirical models relating sap flux-scaled leaf-level transpiration (E(L)) to climate to estimate the change in E(t) after hemlock mortality and forecast how forest E(t) will change in the future in response to eastern hemlock loss. From 2004 to 2011, eastern hemlock mortality reduced annual forest E(t) by 22% and reduced winter E(t) by 74%. As hemlock mortality increased, growth of deciduous tree species--especially sweet birch (Betula lenta L.), red maple (Acer rubrum L.), yellow poplar (Liriodendron tulipifera L.), and the evergreen understory shrub rosebay rhododendron (Rhododendron maximum L.)--also increased, and these species will probably dominate post-hemlock riparian forests. All of these species have higher daytime E(L) rates than hemlock, and replacement of hemlock with species that have less conservative transpiration rates will result in rapid recovery of annual stand E(t). Further, we predict that annual stand E(t) will eventually surpass E(t) levels observed before hemlock was infested with HWA. This long-term increase in forest E(t) may eventually reduce stream discharge, especially during the growing season. However, the dominance of deciduous species in the canopy will result in a permanent reduction in winter E(t) and possible increase in winter stream discharge. The effects of hemlock die-off and replacement with deciduous species will have a significant impact on the hydrologic flux of forest transpiration, especially in winter. These results highlight the impact that invasive species can have on landscape-level ecosystem fluxes.

DOI: 10.1890/12-0616.1
PubMed: 23865229


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Future species composition will affect forest water use after loss of eastern hemlock from southern Appalachian forests.</title>
<author>
<name sortKey="Brantley, Steven" sort="Brantley, Steven" uniqKey="Brantley S" first="Steven" last="Brantley">Steven Brantley</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Forest Resources, University of Minnesota, St. Paul, Minnesota 55108, USA. sbrantle@umn.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Forest Resources, University of Minnesota, St. Paul, Minnesota 55108</wicri:regionArea>
<wicri:noRegion>Minnesota 55108</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ford, Chelcy R" sort="Ford, Chelcy R" uniqKey="Ford C" first="Chelcy R" last="Ford">Chelcy R. Ford</name>
</author>
<author>
<name sortKey="Vose, James M" sort="Vose, James M" uniqKey="Vose J" first="James M" last="Vose">James M. Vose</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23865229</idno>
<idno type="pmid">23865229</idno>
<idno type="doi">10.1890/12-0616.1</idno>
<idno type="wicri:Area/Main/Corpus">002532</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002532</idno>
<idno type="wicri:Area/Main/Curation">002532</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002532</idno>
<idno type="wicri:Area/Main/Exploration">002532</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Future species composition will affect forest water use after loss of eastern hemlock from southern Appalachian forests.</title>
<author>
<name sortKey="Brantley, Steven" sort="Brantley, Steven" uniqKey="Brantley S" first="Steven" last="Brantley">Steven Brantley</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Forest Resources, University of Minnesota, St. Paul, Minnesota 55108, USA. sbrantle@umn.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Forest Resources, University of Minnesota, St. Paul, Minnesota 55108</wicri:regionArea>
<wicri:noRegion>Minnesota 55108</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ford, Chelcy R" sort="Ford, Chelcy R" uniqKey="Ford C" first="Chelcy R" last="Ford">Chelcy R. Ford</name>
</author>
<author>
<name sortKey="Vose, James M" sort="Vose, James M" uniqKey="Vose J" first="James M" last="Vose">James M. Vose</name>
</author>
</analytic>
<series>
<title level="j">Ecological applications : a publication of the Ecological Society of America</title>
<idno type="ISSN">1051-0761</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Appalachian Region (MeSH)</term>
<term>Biodiversity (MeSH)</term>
<term>Extinction, Biological (MeSH)</term>
<term>Models, Biological (MeSH)</term>
<term>Photosynthesis (MeSH)</term>
<term>Plant Transpiration (MeSH)</term>
<term>Population Dynamics (MeSH)</term>
<term>Species Specificity (MeSH)</term>
<term>Time Factors (MeSH)</term>
<term>Trees (MeSH)</term>
<term>Tsuga (physiology)</term>
<term>Water (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Arbres (MeSH)</term>
<term>Biodiversité (MeSH)</term>
<term>Dynamique des populations (MeSH)</term>
<term>Eau (MeSH)</term>
<term>Extinction biologique (MeSH)</term>
<term>Facteurs temps (MeSH)</term>
<term>Modèles biologiques (MeSH)</term>
<term>Photosynthèse (MeSH)</term>
<term>Région des Appalaches (MeSH)</term>
<term>Spécificité d'espèce (MeSH)</term>
<term>Transpiration des plantes (MeSH)</term>
<term>Tsuga (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Water</term>
</keywords>
<keywords scheme="MESH" type="geographic" xml:lang="en">
<term>Appalachian Region</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Tsuga</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Tsuga</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biodiversity</term>
<term>Extinction, Biological</term>
<term>Models, Biological</term>
<term>Photosynthesis</term>
<term>Plant Transpiration</term>
<term>Population Dynamics</term>
<term>Species Specificity</term>
<term>Time Factors</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Arbres</term>
<term>Biodiversité</term>
<term>Dynamique des populations</term>
<term>Eau</term>
<term>Extinction biologique</term>
<term>Facteurs temps</term>
<term>Modèles biologiques</term>
<term>Photosynthèse</term>
<term>Région des Appalaches</term>
<term>Spécificité d'espèce</term>
<term>Transpiration des plantes</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Infestation of eastern hemlock (Tsuga canadensis (L.) Carr.) with hemlock woolly adelgid (HWA, Adelges tsugae) has caused widespread mortality of this key canopy species throughout much of the southern Appalachian Mountains in the past decade. Because eastern hemlock is heavily concentrated in riparian habitats, maintains a dense canopy, and has an evergreen leaf habit, its loss is expected to have a major impact on forest processes, including transpiration (E(t)). Our goal was to estimate changes in stand-level E(t) since HWA infestation, and predict future effects of forest regeneration on forest E(t) in declining eastern hemlock stands where hemlock represented 50-60% of forest basal area. We used a combination of community surveys, sap flux measurements, and empirical models relating sap flux-scaled leaf-level transpiration (E(L)) to climate to estimate the change in E(t) after hemlock mortality and forecast how forest E(t) will change in the future in response to eastern hemlock loss. From 2004 to 2011, eastern hemlock mortality reduced annual forest E(t) by 22% and reduced winter E(t) by 74%. As hemlock mortality increased, growth of deciduous tree species--especially sweet birch (Betula lenta L.), red maple (Acer rubrum L.), yellow poplar (Liriodendron tulipifera L.), and the evergreen understory shrub rosebay rhododendron (Rhododendron maximum L.)--also increased, and these species will probably dominate post-hemlock riparian forests. All of these species have higher daytime E(L) rates than hemlock, and replacement of hemlock with species that have less conservative transpiration rates will result in rapid recovery of annual stand E(t). Further, we predict that annual stand E(t) will eventually surpass E(t) levels observed before hemlock was infested with HWA. This long-term increase in forest E(t) may eventually reduce stream discharge, especially during the growing season. However, the dominance of deciduous species in the canopy will result in a permanent reduction in winter E(t) and possible increase in winter stream discharge. The effects of hemlock die-off and replacement with deciduous species will have a significant impact on the hydrologic flux of forest transpiration, especially in winter. These results highlight the impact that invasive species can have on landscape-level ecosystem fluxes.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23865229</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>08</Month>
<Day>22</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>09</Month>
<Day>18</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">1051-0761</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>23</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2013</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>Ecological applications : a publication of the Ecological Society of America</Title>
<ISOAbbreviation>Ecol Appl</ISOAbbreviation>
</Journal>
<ArticleTitle>Future species composition will affect forest water use after loss of eastern hemlock from southern Appalachian forests.</ArticleTitle>
<Pagination>
<MedlinePgn>777-90</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Infestation of eastern hemlock (Tsuga canadensis (L.) Carr.) with hemlock woolly adelgid (HWA, Adelges tsugae) has caused widespread mortality of this key canopy species throughout much of the southern Appalachian Mountains in the past decade. Because eastern hemlock is heavily concentrated in riparian habitats, maintains a dense canopy, and has an evergreen leaf habit, its loss is expected to have a major impact on forest processes, including transpiration (E(t)). Our goal was to estimate changes in stand-level E(t) since HWA infestation, and predict future effects of forest regeneration on forest E(t) in declining eastern hemlock stands where hemlock represented 50-60% of forest basal area. We used a combination of community surveys, sap flux measurements, and empirical models relating sap flux-scaled leaf-level transpiration (E(L)) to climate to estimate the change in E(t) after hemlock mortality and forecast how forest E(t) will change in the future in response to eastern hemlock loss. From 2004 to 2011, eastern hemlock mortality reduced annual forest E(t) by 22% and reduced winter E(t) by 74%. As hemlock mortality increased, growth of deciduous tree species--especially sweet birch (Betula lenta L.), red maple (Acer rubrum L.), yellow poplar (Liriodendron tulipifera L.), and the evergreen understory shrub rosebay rhododendron (Rhododendron maximum L.)--also increased, and these species will probably dominate post-hemlock riparian forests. All of these species have higher daytime E(L) rates than hemlock, and replacement of hemlock with species that have less conservative transpiration rates will result in rapid recovery of annual stand E(t). Further, we predict that annual stand E(t) will eventually surpass E(t) levels observed before hemlock was infested with HWA. This long-term increase in forest E(t) may eventually reduce stream discharge, especially during the growing season. However, the dominance of deciduous species in the canopy will result in a permanent reduction in winter E(t) and possible increase in winter stream discharge. The effects of hemlock die-off and replacement with deciduous species will have a significant impact on the hydrologic flux of forest transpiration, especially in winter. These results highlight the impact that invasive species can have on landscape-level ecosystem fluxes.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Brantley</LastName>
<ForeName>Steven</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Forest Resources, University of Minnesota, St. Paul, Minnesota 55108, USA. sbrantle@umn.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ford</LastName>
<ForeName>Chelcy R</ForeName>
<Initials>CR</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Vose</LastName>
<ForeName>James M</ForeName>
<Initials>JM</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Ecol Appl</MedlineTA>
<NlmUniqueID>9889808</NlmUniqueID>
<ISSNLinking>1051-0761</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>059QF0KO0R</RegistryNumber>
<NameOfSubstance UI="D014867">Water</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001061" MajorTopicYN="N" Type="Geographic">Appalachian Region</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044822" MajorTopicYN="Y">Biodiversity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053476" MajorTopicYN="N">Extinction, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="Y">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010788" MajorTopicYN="N">Photosynthesis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018526" MajorTopicYN="N">Plant Transpiration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011157" MajorTopicYN="N">Population Dynamics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013045" MajorTopicYN="N">Species Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013997" MajorTopicYN="N">Time Factors</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="Y">Trees</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D028225" MajorTopicYN="N">Tsuga</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014867" MajorTopicYN="Y">Water</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>7</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>7</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>8</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23865229</ArticleId>
<ArticleId IdType="doi">10.1890/12-0616.1</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Ford, Chelcy R" sort="Ford, Chelcy R" uniqKey="Ford C" first="Chelcy R" last="Ford">Chelcy R. Ford</name>
<name sortKey="Vose, James M" sort="Vose, James M" uniqKey="Vose J" first="James M" last="Vose">James M. Vose</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Brantley, Steven" sort="Brantley, Steven" uniqKey="Brantley S" first="Steven" last="Brantley">Steven Brantley</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002680 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002680 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23865229
   |texte=   Future species composition will affect forest water use after loss of eastern hemlock from southern Appalachian forests.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23865229" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020